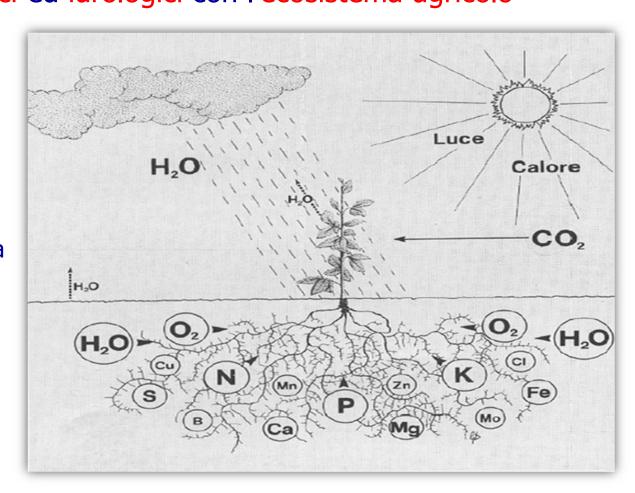
Agronomia

Agrometeorologia

- Radiazione -



Agronomia

"Per agrometeorologia si intende la scienza che studia le interazioni dei fattori meteorologici ed idrologici con l'ecosistema agricolo-

forestale e con l'agricoltura intesa nel suo senso più ampio, comprendendo cioè la zootecnia e la selvicoltura".

(art 1. Associazione Italiana di Agrometeorologia)

Agronomia

La **conoscenza** delle **condizioni agrometeorologiche** di una data area richiede la misura di **variabili specifiche**, con una determinata frequenza spazio-temporale. Le principali sono:

- Radiazione solare,
- Temperatura dell'aria,
- Temperatura del terreno,
- Umidità dell'aria,
- Umidità del terreno,
- Bagnatura fogliare,
- Precipitazioni,
- Velocità del vento.

- Variano nel tempo in modo continuo o discreto (pioggia).
- Si esprimono nell'intervallo di un periodo (giorno, decade, mese).
- Si esprimono con il valore massimo, medio, minimo (es. temperatura), o con la sommatoria (es. pioggia).

Radiazione solare

Agronomia

Funzioni:

- Fotosintesi: CO₂ + H₂O + luce => Carboidrati + O₂
- Evapotraspirazione: apporto energetico per la traspirazione della pianta e per l'evaporazione di acqua dal suolo.
- Riscaldamento aria, pianta, suolo.

Radiazione solare

Agronomia

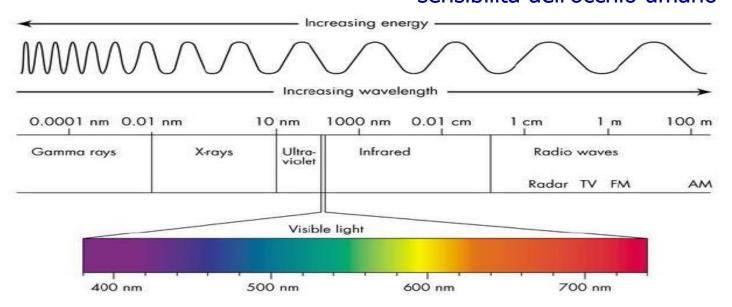
Fotosintesi:

- Trasforma
 l'energia luminosa
- ✓ inesauribile, rinnovabile, gratuita, distribuita sul pianeta, pulita
 ma
- ✓ ha bassa intensità (energia/superficie), discontinuità temporale, non è trasportabile né conservabile, è difficilmente utilizzabile
- In energia chimica
- ✓ alta intensità, trasportabile, conservabile, facilmente utilizzabile da animali, macchine, ecc.

ma

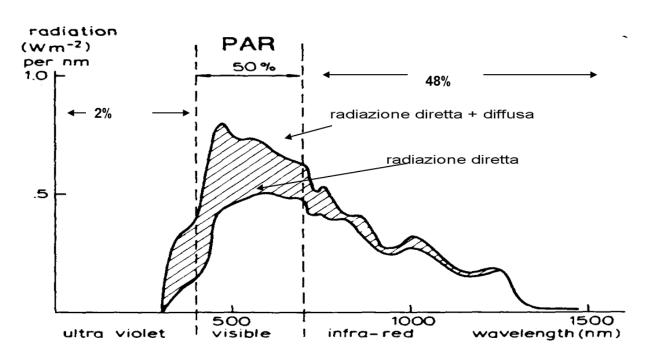
✓ produce scorie, è costosa, è esauribile

Radiazione solare

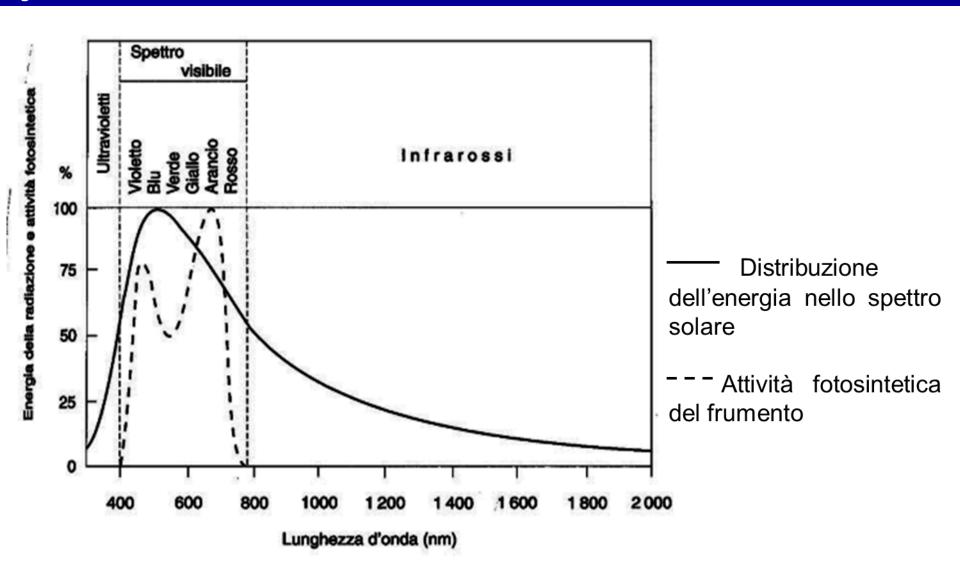

Agronomia

Caratteristiche:

- intensità di flusso
- composizione spettrale
- radiazione fotosinteticamente attiva (PAR)
- illuminazione


Unità di misura:

- <u>flusso</u>: MJ m⁻² d⁻¹ (o KJ m⁻² d⁻¹) o watt m⁻² o cal cm⁻² d⁻¹
- fotometria: micromoli di fotoni s⁻¹ m⁻² (μEinstein s⁻¹ m⁻²)
- <u>illuminazione</u>: lux, basati sulla sensibilità dell'occhio umano


Radiazione solare: composizione spettrale

- PAR: radiazione fotosinteticamente attiva (fotosintesi e calore) da 400 a 700 nm
- Infrarosso (IR) >700 nm, radiazione termica (48% radiazione totale)
- **Ultravioletto**: da 230 a 400 nm, "poco importante" (2% radiazione totale)

Radiazione solare: composizione spettrale

Bilancio della radiazione

- Costante solare: All'esterno dell'atmosfera la radiazione ricevuta da un piano perpendicolare ai raggi incidenti è di circa 1400 W m⁻², pressoché costante (variazione 1-5%).
- Radiazione globale (Rg): Della radiazione extra-atmosferica, circa il 49% raggiunge la superficie del suolo; il resto viene assorbita o riflessa all'esterno dall'atmosfera (nubi, pulviscolo, vapore acqueo).
- Radiazione diretta: Il 24% arriva direttamente al suolo.
- Radiazione diffusa: Un altro 23% arriva al suolo diffuso da nubi, pulviscolo, vapore acqueo; arriva quindi senza una direzione prevalente.

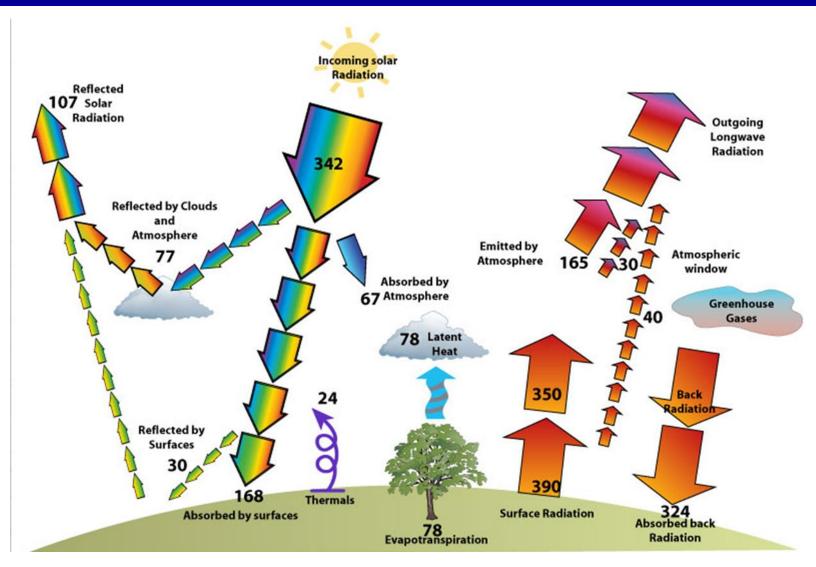
Bilancio della radiazione

Agronomia

 Albedo (α): Parte della radiazione globale in arrivo viene riflessa direttamente (e quindi non utilizzata).

✓ albedo neve 95%

✓ albedo deserto 30%


✓ albedo vegetazione
25% (circa 10% PAR)

✓ albedo terreno scuro 10%

✓ albedo acqua 5%

Bilancio della radiazione

Radiazione netta

Agronomia

Emissione da suolo e atmosfera:

 Suolo e atmosfera hanno a loro volta una emissione di radiazione, dipendente dalla temperatura, nell'infrarosso a onda lunga (3000-10000 nm). Dall'atmosfera è riemessa verso il suolo (effetto serra).

Bilancio radiativo:

 La radiazione netta (Rn) che costituisce l'effettivo apporto energetico al suolo, è dato da:

$$Rn = Rg(1-\alpha) + Ra - Rs$$

• Rg = radiazione globale; Ra = radiazione che giunge dall'atmosfera; Rs = radiazione emessa dalla superficie (vegetazione, terreno nudo e acqua); α =albedo.

Radiazione netta


- Il **bilancio** per l'intera **terra** è in **pari**:
 - √ è positivo durante il giorno e
 - ✓ negativo durante la notte.
- Le diverse aree della terra hanno bilanci differenti, da cui differenze di temperature, circolazione di masse d'aria, effetti sulla meteorologia.
- In **notti molto terse** il pericolo di **gelate per irraggiamento** è maggiore (ridotto effetto serra da parte dell'atmosfera).

Bilancio della radiazione

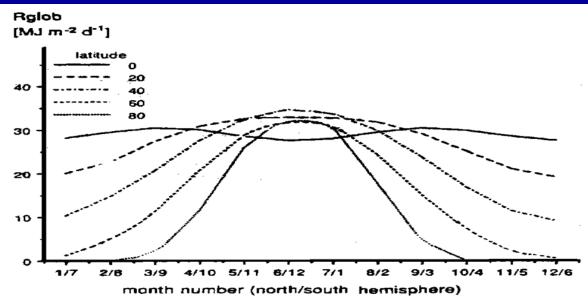
Agronomia

Flussi di energia solare (in miliardi di watt)

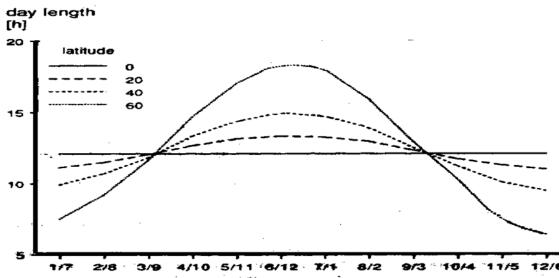
Bilancio della radiazione

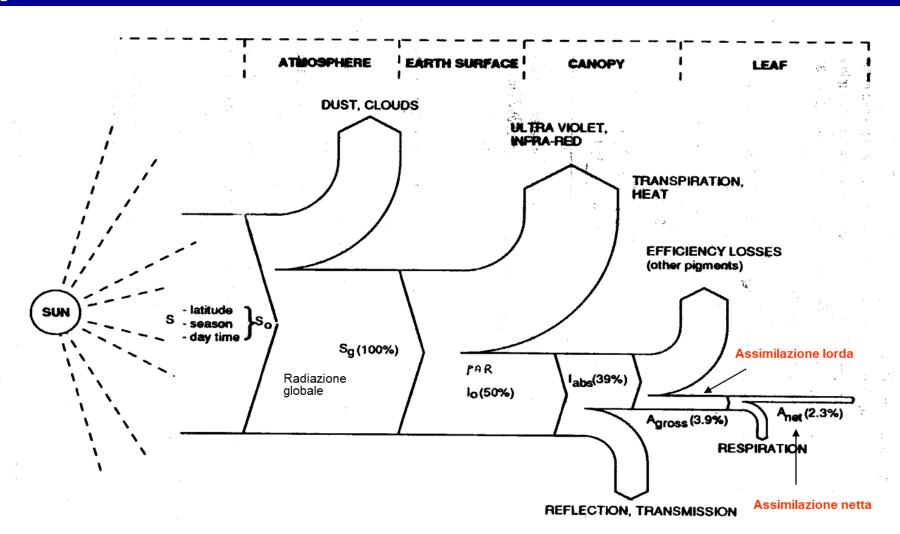
Agronomia

Flussi di energia solare (in miliardi di watt)


Anche se la **fotosintesi** riesce ad assorbire solo l'**1% dell'energia** solare che arriva sul Pianeta, riesce ad assorbire una quantità di energia pari a **9 volte il consumo energetico** di **tutti gli abitanti della Terra**.

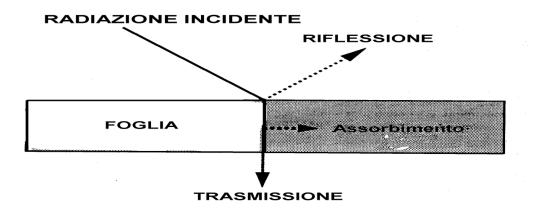
Vale a dire che circa il 10% dei vegetali (prodotti della fotosintesi), se utilizzati per produrre energia, basterebbero a soddisfare il fabbisogno energetico di tutta la popolazione mondiale.


Rg e durata del giorno


Radiazione globale in funzione di latitudine e periodo dell'anno

Durata del giorno in funzione di latitudine e periodo dell'anno

Utilizzo della radiazione



Utilizzo della radiazione: foglia

Agronomia

A livello della foglia:

- **Riflessione**: mediamente una foglia riflette il 10% della radiazione incidente.
- **Trasmissione**: mediamente il 10%, ma può variare tra 0 (foglie spesse) e 40% (in foglie molto sottili).
- Assorbimento = 100 riflessione (10%) trasmissione (10%)
 -> (80% in media).

Utilizzo della radiazione: coltura

Agronomia

Nell'ipotesi di una coltura con:

- 3 strati di foglie,
- completamente ricoprenti il terreno,
- orizzontali e
- con trasmissività e riflessione del 10%.

	Parincidente	PAR	PAR	PAR
	w m - 2	riflessa	trasm essa	assorbita
strato 1	2 0 0	2 0	2 0	1 6 0
strato 2	2 0	2	2	1 6
strato 3	2	0.2	0.2	1 . 6
suolo	0 . 1	tra s c u ra b ili		
Totale				177.6
%				88.8

Utilizzo della radiazione: coltura

Agronomia

Nell'ipotesi di una coltura misurazioni ripetute e complesse considerazioni matematiche hanno dimostrato che:

$$I_d = I_0 \cdot e^{-k \cdot LAI_d}$$

 I_d = PAR alla profondità d; I_0 = PAR incidente; k = coefficiente di estinzione; LAI = Leaf Area Index (superficie di foglie (al livello d)/superficie del terreno su cui le foglie insistono).

Cioè: la radiazione si attenua esponenzialmente all'interno di una coltura, secondo la quantità di foglie presente dall'altezza massima alla profondità considerata.

L'attenuazione è secondo un **coefficiente di estinzione** *k* che nel caso di angolo di inserzione delle foglie distribuito casualmente (distribuzione sferica) vale 0.7 (se foglie "verticali" vale 0.45).

Utilizzo della radiazione: coltura

Agronomia

Si deve infine considerare che la **luce riflessa** dalle foglie direttamente **verso l'esterno** della coltura **è persa** (!!!); la formula diviene allora:

$$I_d = (1 - \alpha) \cdot I_0 \cdot e^{-k \cdot LAI_d}$$

 $(\alpha = albedo)$

Utilizzo della radiazione: fotosintesi

Agronomia

Fotosintesi:

Conversione energia luminosa in energia chimica (di legame).

Efficienza della conversione della PAR assorbita:

- 5% (lordo) in piante C3 (grano, erba medica,....)
- 7.5% (lordo) in piante C4 (mais, sorgo,...)

L'efficienza varia in funzione di:

- intensità di luce
- concentrazione CO₂

- temperatura
- architettura canopy
- struttura della foglia (es. cloroplasti su 2 strati in C4)
- traslocazione/accumulo (feedback negativo da sink: fotosintati non si allontanano)
- respirazione (anche in questo le C4 sono più efficienti)
- nutrizione minerale e idrica (cicli + lunghi)

Utilizzo della radiazione: fotosintesi

Agronomia

Interventi possibili:

- Scelta cultivar
- Tecniche per migliorare la nutrizione
 - ✓ Irrigazione
 - ✓ Concimazioni
 - **√** ...
- Epoca di semina (anticipare quanto possibile)
- Riduzione traspirazione (frangivento)
- Migliorare intercettazione (densità di semina, orientamento file (N-S), disposizione equidistante,...)
- Consociazione temporanea

Utilizzo della radiazione: orientamento foglie

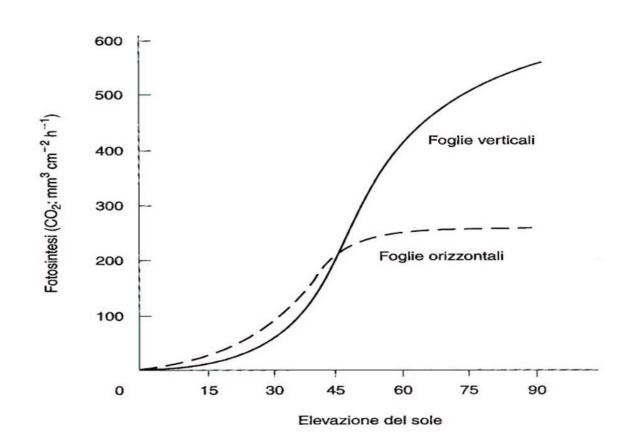
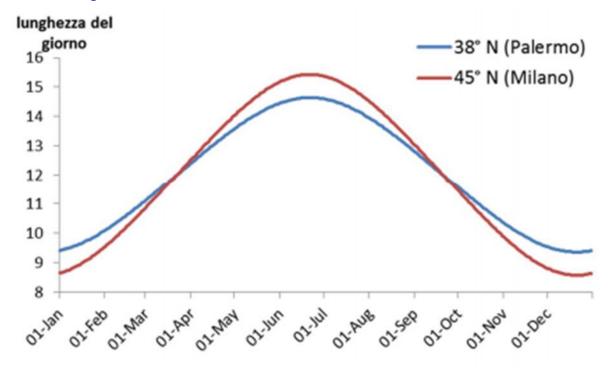


Fig. 2.7 Fotosintesi in piante con foglie ad architettura verticale e orizzontale (da WILLIAMS, 1975).



Fotoperiodismo

Agronomia

Risposta fisiologica delle piante alla durata del giorno.

- epoca di fioritura (la più importante)
- dormienza invernale gemme
- caduta foglie
- formazione organi di riserva

Fotoperiodismo

Agronomia

Risposta fisiologica delle piante alla durata del giorno.

- epoca di fioritura (la più importante)
- dormienza invernale gemme
- caduta foglie
- formazione organi di riserva

Piante **brevidiurne** fioriscono con fotoperiodo inferiore a una soglia critica (no > 12 ore)

Piante di origine tropicale o subtropicale:

mais soia

tabacco patata

sorgo cotone

Piante **longidiurne** fioriscono con fotoperiodo superiore a una soglia critica (>14 ore)

Piante di latitudini medie e elevate:

frumento fava

bietola cipolla

trifoglio pratense fleolo

Piante neutrodiurne

Piante in origine brevidiurne, in seguito a selezione artificiale o naturale

mais soia

tabacco fagiolo

riso

Fotoperiodismo: conseguenze agronomiche

- Spostamento piante al di fuori dell'areale di origine:
 - ✓ o non fioriscono
 - ✓ o allungano troppo il ciclo vegetativo.
- Necessità di miglioramento genetico per ridurre la sensibilità al fotoperiodo.
- Per l'interruzione dell'oscurità bastano illuminazioni modestissime o solo lampi di luce
 - ✓ forzatura in serra di colture fuori stagione;
 - √ diverse generazioni all'anno, per miglioramento genetico;
 - √ forse spiega il supposto effetto della luna.