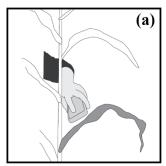
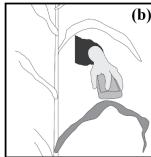
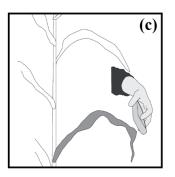


1. Define ranges/statistical distributions for trait values

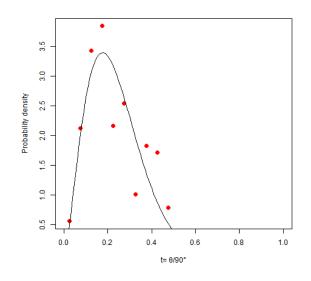
BIOSYSTEMS ENGINEERING 164 (2017) 1-12

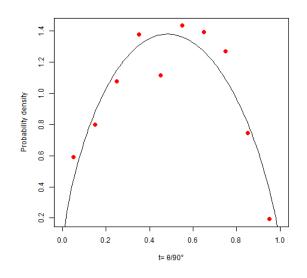



Research Paper

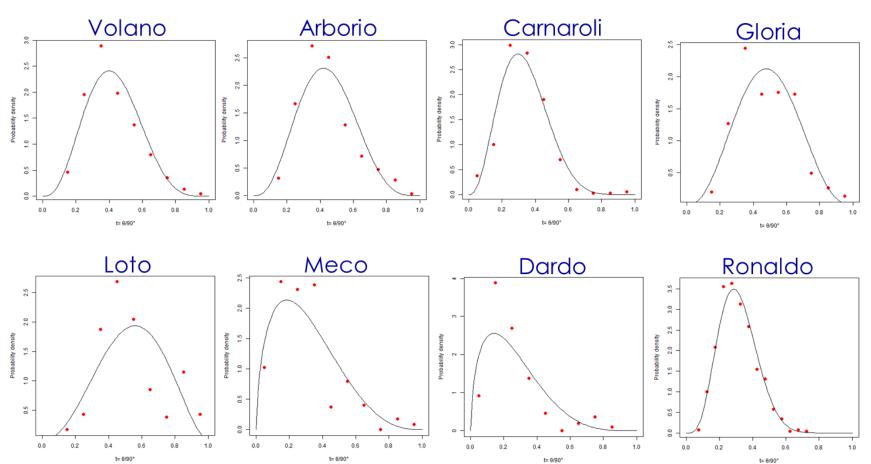

PocketPlant3D: Analysing canopy structure using a smartphone

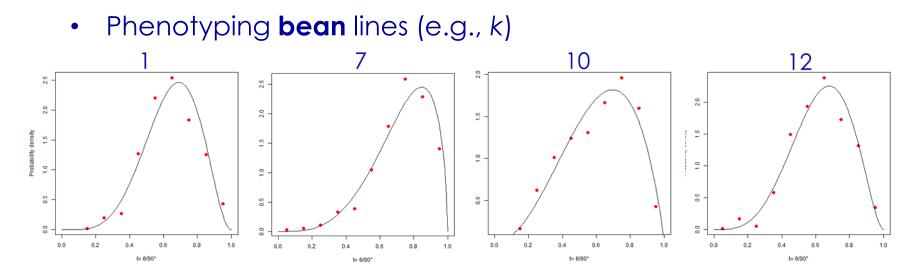
Roberto Confalonieri ^{a,*}, Livia Paleari ^a, Marco Foi ^b, Ermes Movedi ^c, Fosco M. Vesely ^a, William Thoelke ^{a,d}, Cristina Agape ^d, Giulia Borlini ^d, Irene Ferri ^d, Federico Massara ^d, Roberto Motta ^d, Riccardo A. Ravasi ^d, Sofia Tartarini ^d, Camilla Zoppolato ^d, Luca M. Baia ^d, Andrea Brumana ^d, Davide Colombo ^d, Antonio Curatolo ^d, Valerio Fauda ^d, Denise Gaia ^d, Andrea Gerosa ^d, Antonio Ghilardi ^d, Enrico Grassi ^d, Andrea Magarini ^d, Francesco Novelli ^d, Fatima B. Perez Garcia ^d, Andrea Rota Graziosi ^d, Michele Salvan ^d, Tommaso Tadiello ^d, Laura Rossini ^e

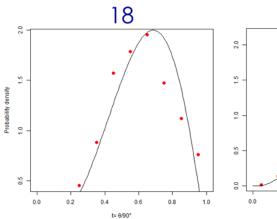


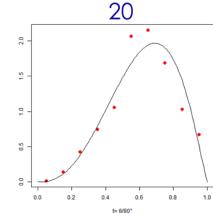

- 1. Define ranges/statistical distributions for trait values
 - Phenotyping **barley** lines (e.g., k)
 - ✓ line7165
 - $\chi = 0.527$ • k = 0.38

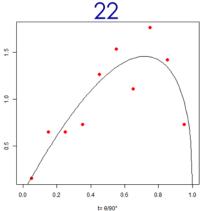
- 1. Define ranges/statistical distributions for trait values
 - Phenotyping **barley** lines (e.g., k)
 - ✓ Calanque
 - $\circ \chi = 1.537$
 - k = 0.76

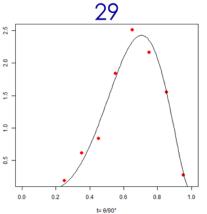

- 1. Define ranges/statistical distributions for trait values
 - Phenotyping **barley** lines (e.g., k)
 - ✓ Cometa
 - $\circ \chi = 1.835$
 - k = 0.84




- 1. Define ranges/statistical distributions for trait values
 - Phenotyping **rice** varieties (e.g., *k*)






1. Define ranges/statistical distributions for trait values

1. Define ranges/statistical distributions for trait values

Parameter	Relevance for breeding (e.g.)	Distribution	Source
Radiation use efficiency	Peng et al. 2008;	Normal	Kiniry et al. 2001; Boschetti et al. 2006
(RUE; g MJ ⁻¹)	Dingkhun et al. 2015	(m 2.7; s 0.1)	
Extinction coefficient	Peng et al. 2008; Sheehy	Normal	Casanova et al. 1998; Dingkhun et al. 1999;
(k; -)	et al. 2013	(m 0.47; s 0.04)	Kiniry et al. 2001; Boschetti et al. 2006
SLA at emergence	Peng et al. 2008; Kush et	Normal	Kropff et al. 1994; Ash et al. 1998;
(SLAini; m² kg⁻¹)	al. 2012	(m 41.6; s 5.9)	Confalonieri and Bocchi 2005
SLA at tillering	Ashikari et al. 2005; Peng	Normal	Laza et al. 2015; Boschetti et al. 2006
(SLAtill; m² kg⁻¹)	et al. 2008;	(m 28.7; s 3.9)	
Threshold T for cold sterility (T-ColdSter; °C)	Suh et al. 2010; Sanchez et al. 2014	Normal (temp. m 13.5; s 1.4) (trop. M 16.6; s 1.2)	Satake 1969; Da Cruz et al. 2006; Farrel et al. 2006; Thakur et al. 2010; Deng et al. 2011; Dreni et al. 2012; National Rice Authority
Threshold T for heat sterility (T-HeatSter; °C)	Matsui 2009; Jagadish et al. 2010	Normal (m 34.4; s 1.5)	Yoshida 1981; Satake 1995; Nakagawa et al. 2002; Matsui 2009; Ishimaru et al. 2010; Jagadish et al. 2010; Shah et al. 2011; Maruyama et al. 2013
Blast resistance	Fisher et al. 2005; Fukoka	Discrete	National Rice Authority
(BlastRes; -; 1 to 3)	et al. 2009	(1, 2, 3)	
Threshold T for chalkiness (T-Chalkiness; °C)	Yamakawa et al. 2007; Usui et al. 2014	Normal (m 26.4; s 0.9)	Wakamatsu et al. 2007; Yamakawa et al. 2007; Morita et al. 2008; Madan et al. 2012; Usui et al. 2014; Matsutomi et al. 2015
Threshold T for grain	Siebenmorgen et al. 2013;	Normal	Ambardekar et al. 2011; Okada et al. 2011;
breakage (T-HeadRlce; °C)	Sreenivasulu et al. 2015	(m 23.9; s 2.1)	Siebenmorgen et al. 2013

- 1. Define ranges/statistical distributions for trait values
- 2. Identify most relevant traits

✓ Global sensitivity analysis

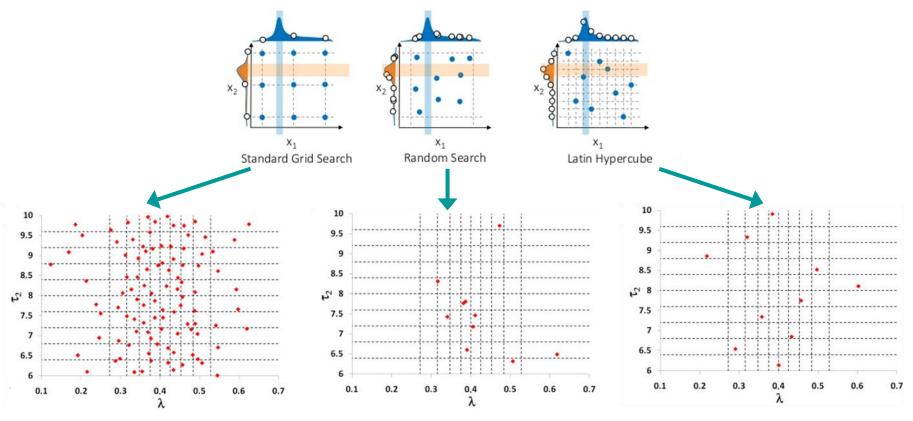
 Received: 29 October 2016
 Revised: 24 February 2017
 Accepted: 27 February 2017

 DOI: 10.1111/gcb.13682
 February 2017
 Accepted: 27 February 2017

PRIMARY RESEARCH ARTICLE

Surfing parameter hyperspaces under climate change scenarios to design future rice ideotypes

Livia Paleari¹ | Ermes Movedi¹ | Giovanni Cappelli^{2*} | Lloyd T. Wilson³ | Roberto Confalonieri⁴


- **Objective**: quantifying the role of uncertain input factors in explaining the variability of the outputs of mathematical models.
- It is often used to identify the model parameters that under specific conditions – have the largest effect on model outputs.

- The **rationale** is to quantify changes in model outputs occurring because of changes in model inputs.
- The first idea could be:
 - Dividing the biophysical range of each input in a certain number of regular intervals.
 - ✓ For each input, running simulations assigning to the input the value of each interval.
 - One input at a time
 - N-dimensional grids (N being the number of inputs)

- Problems:
 - ✓ How many intervals? (response functions often discontinuous)
 - ✓ If many intervals and N-dimensional grids → the number of simulations can be huge

- Sensitivity analysis methods were proposed to efficiently explore the parameter hyperspace
 - Parsimony
- Screening methods (mean and standard deviations of incremental ratios)

✓ Morris

- Regression-based methods
 - ✓ Latin Hypercube Sampling (LHS)
 - 🗸 Random
 - ✓ Quasi-Random LpTau (LpTau)
- Variance-based methods
 - ✓ Sobol'
 - ✓ Fourier Amplitude Sensitivity test (FAST)
 - ✓ Extended FAST

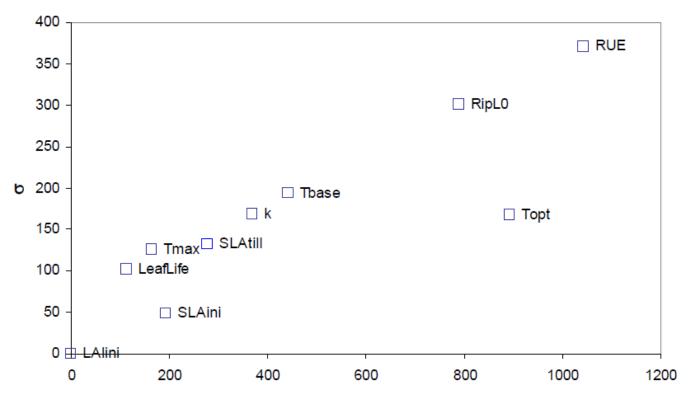
Accuracy

Morris method

- It is **very fast** (few model executions are needed).
- Useful in case of models with many inputs and/or very demanding in terms of computational time.
- **Sometimes** used to identify parameters with a low impact on output variability
 - The others are then analyzed using methods requiring many executions (2-step approach).
- In **comparative studies**, it demonstrated **effectiveness in ranking** parameters according to their relevance
 - Used alone (1 step) when the aim is obtaining a qualitative ranking of inputs.

- Assuming
 - ✓ $X = (x_1, ..., x_i, ..., x_N)$ as the vector of the *N* inputs on which the sensitivity analysis is being performed
 - ✓ y(X) as the model **output**.
- **Rescale** each parameter x_i in the interval [0, 1].
- Force each x_i to assume values in the set $\{0, 1/(p-1), 2/(p-1), ..., 1\}$, *p* being the number of levels.
- The **parameter space** Ω is then defined as a *N*-dimensional, *p*-level unit hypercube.

Assuming *∆* as 1/[2(p − 1)], a number of incremental ratios (elementary effects) (R_i) is calculated as:


$$R_i(x_1, ..., x_N, \Delta) = \frac{y(x_1, ..., x_{i-1}, x_i + \Delta, ..., x_{i+1}, ..., x_N) - y(x_1, ..., x_N)}{\Delta}$$

- $\boldsymbol{\Omega}$ is randomly sampled over r different trajectories.
- After the sampling, parameters are scaled back to their biophysical values.
- The total number of model executions is r(k + 1).
- Mean (μ_i) and standard deviation (σ_i) of each distribution of R_i are then calculated
 - ✓ μ_i represents the **overall influence** (total effect) of the parameter x_i
 - ✓ σ_i identifies (for high values) **non-linearities or interactions** with other parameters.

Sample results

- ✓ WARM rice model, northern Italy
- ✓ Output: aboveground biomass at maturity

Regression-based methods (LHS, Random, LpTau)

• The rationale is **approximating the relationship** between inputs (x_i) and output (y) through the following equation:

$$y = b_0 + \sum_{i=1}^{N} b_i \cdot x_i + \varepsilon$$

where b_i is the coefficient to be estimated for x_i and ε is the random error.

 When the inputs x_i are independent, it is possible to use the standardized regression coefficient (SRC) to get an estimate of the sensitivity index:

$$SRC(x_i) = b_i \cdot \frac{\hat{s}_i}{\hat{s}}$$

where \hat{s}_i and \hat{s} are the **standard deviations** of the input and of the output

- Each SRC gives information about the effect of changing the value of an input from its standard value by a fixed fraction of its standard deviation, while maintaining the other factors at their default values.
- This family of methods also provides the coefficient of determination (R²), indicating the portion of total variance explained by the regression model.
- If the regression model is actually able to explain the relationship between inputs and output, the larger the value of a SRC, the more sensitive the model to that input.
- Among the sampling techniques more popular for generating the combination of model inputs, a key role is played by Latin Hypercube, Random and Quasi-Random LpTau.

Variance-based methods (Sobol', FAST, E-FAST)

- Variance-based methods use a variance ratio to estimate the importance of inputs.
- The rationale is the partitioning of the total variance of model output V(Y) (analogous to ANOVA) using the following equation:

$$V(Y) = \sum_{i=1}^{N} D_i + \sum_{i \le j \le N}^{N} D_{ij} + \dots + \sum_{i \le \dots N}^{N} D_{i \dots N}$$

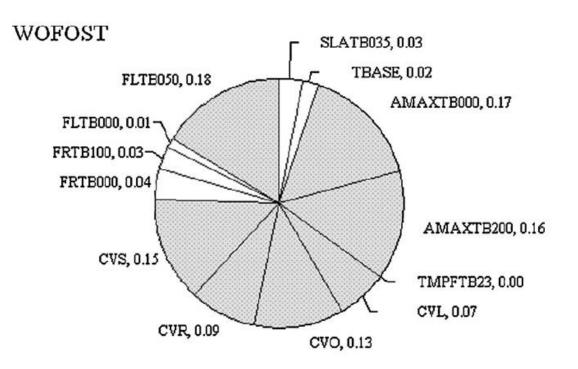
where:

- ✓ $D_i = V[E(Y/x_i)]$ is the **first order effect** for each input x_i
- ✓ values from $D_{ij} = V[E(Y/x_i, x_j)] D_i D_j$ to $D_{1...N}$ are the second to N° order effects (interactions).

• The sensitivity index for the **first order effect** (effect of the single input, no interactions) of the input x_i is:

$$S_i = \frac{V[E(Y/x_i)]}{V(Y)}$$

- According to most implementations, the number of iterations (decidedly larger than in other methods) is kept to a "reasonable" value by calculating only first and total order (St) effects (no explicit estimates of second, third, ... orders).
- All the effects for orders higher than first


$$St_i = \sum S_i + \sum_{j \neq i} S_{ij} + \dots + S_{1 \dots N}$$

are estimated together (total – first order).

 Sobol' is based on the Monte Carlo integration method, FAST and E-FAST use the Fourier series (approximation but more efficient).

- Sample results
 - ✓ WOFOST model
 - ✓ Rice in Northern Italy
 - ✓ Output: yield

