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In silico ideotyping

- After deriving ideotype profiles, a crucial step is quantifying the
potential benefits deriving from their adoption

v This allows comparing costs and benefits of a breeding
program based on the ideotypes
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In silico ideotyping

Development of crop ideotypes

In case the ideotype differs from current varieties for a single trait,
the evaluation of its performances can be achieved with an in
silico intfrogression
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In silico ideotyping

Development of crop ideotypes
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Development of crop ideotypes

 Sample results

v' Evaluation of rice ideotypes in Italian districts

Resistance to blast disease

In silico ideotyping

Yield increase (%)

Yield increase (%)

16 ~

14 4

12 4

10

16 ~

14 -

12

10 +

L - Blast (cv. Volano)

Baseline

2

Time horizon

O - Blast (cv. Volano)

Baseline

2020

Time horizon

2050

OBaseline
B Hadley - AIB
BNCAR -B1

OBaseline
B Hadley - AIB
BNCAR -B1



 Sample results

v' Evaluation of rice ideotypes in Italian districts

= Tolerance to cold-induced spikelet sterility

L - Cold sterility (cv. Thaibonnet)
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In silico ideotyping

* As mentioned, current crop models are not completely suitable to
support breeding/genetics

v' They were not explicitly developed for this purpose

v Therisk is to develop ideotypes that cannot be realized in
vivo

- Two sirategies: —
Biophysical

v’ Mid term B

Model
parameters

Ideotyping



| In silico ideotyping
Mid term strategy

- Develop new models, by building models around traits
v An example for rice and salinity (foxic effect)

= We defined as “traits” crop features for which specific
breeding programs are ongoing

= We developed a model starting from those traits
www.nature.comlscientificreports

SCIENTIFIC REP{?RTS

OFEN Trait-based model development to
“support breeding programs. A case
-study for salt tolerance andrice
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Published online: 28 June 2017 Eco-physio!ogical mo_dels a.re increasingly use.d to analyze G X ExX M inte.ractions to support breeding
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In silico ideotyping

Mid term strategy
 Tolerance traits:

v Nao+ uptake and translocation
to the shoot (T1)

v Na* sequestration into
pseudo-culm base (T2)

v Na* compartmentation
into oldest leaves (T3)

v Impact of the accumulated

Na* on photosynthesis and
leaf senescence (T4) 7 \; e

v Na* induced spikelet

sterility (T5) / S/
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In silico ideotyping

Development of crop ideotypes

Mid term strategy

« Sample results

v Rice, salinity, Greece, California

EC (dS m'})
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Mid term strategy

(T5)NaToPan
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o o In silico ideotyping
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In silico ideotyping

Mid term strategy
« Develop new models, by building models around traits
v" Not only salinity...

= Canopy structure
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Mid term strategy

« Develop new models, by building models around traits

v" Not only salinity...

= Canopy structure
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In silico ideotyping

Mid term strategy
« Develop new models, by building models around traits
v" Not only salinity...
= Multi-spectral photosynthesis

o Available crop models simulate photosynthesis without
considering efficiency in different wavelengths

o Saturation to light of enzymatic chains is mostly
simulated at the level of whole canopy

o Phytochrome A



In silico ideotyping

Development of crop ideotypes
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In silico ideotyping

* As mentioned, current crop models are not completely suitable to
support breeding/genetics

v' They were not explicitly developed for this purpose

v Therisk is to develop ideotypes that cannot be realized in
vivo
- Two sirategies: o

v’ Mid term B
v Short term

Model
parameters

Ideotyping



Development of crop ideotypes

In silico ideotyping

Short term sirategy

What can we do while new models are developed?

Try to reduce the risk of defining in silico varieties that cannot be
realized in vivo

How?e

v Selecting the most suitable model according to the specific
objective

v' Pay attention to the biophysical meaning of parameters
(which parameters, ranges, distributions)

v Multi-model ideotyping?
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Multi-model ideotyping

« Assumptions:

v Models are partially unsuitable for ideotyping for different
reasons (ways processes are represented)

= Each having imperfect relationships between parameters
and traits

v The effects of those imperfect relationships will be diluted

v" The impact of the (over)responsiveness of different models to
the uncertainty in the distributions for the same parameters (or
of parameters with a very similar meaning) will be decreased

- We are leading an international activity on this within AgMIP-
Rice
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Development of crop ideotypes

In silico ideotyping

Short term sirategy

What can we do while new models are developed?

Try to reduce the risk of defining in silico varieties that cannot be
realized in vivo

How?e

v Selecting the most suitable model according to the specific
objective

v' Pay attention to the biophysical meaning of parameters
(which parameters, ranges, distributions)

v Multi-model ideotyping?

v Interaction between modellers, breeders, geneticists,
physiologists



Crop models and breeding

Two main sirategies

1. Ildentifying most promising traits (and trait values), also targeting
“future” conditions

« Estimating potential benefits
...In sillico ideotyping
2. Extending the potential of genomic prediction (GP)
...In silico phenotyping<¢
« Very few attempts at the moment

Currently, focus on phenology



Development of crop ideotypes

In silico phenotyping

 “Standard” GP

« “Model-based” GP

— v Genomic data

+

v Deriving relationships
between genomic data
and plant traits

V

- v Predicting phenotype
of other accessions

v Decompose complex
traits (frait = parameter)

v Plant traits from phenotyping ! !

—» v Calibrate model
parameters using
phenotyping data

@

— v Derive relationships
between genomic
< GxE | dafaand model

parameters




In silico phenotyping

Why crop model-supported GP¢
v Standard GP:

= Statistics is used to derive relationships
between genotype and phenotype

- relationships are not explicit

- relationships valid only under the
same conditions for which they were developed

v Model-supported GP:
= The modelis used to interpret G x E inferactions

- relationships between genotype and phenotype are
more explicit

- relationships should be valid under conditions different
from those they were developed for
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Development of crop ideotypes

« Sample results:
v 169 rice accessions (rice diversity panel)

v Genomic data (SNPs) consisting of 700,000 SNPs from the high-
density rice array (IRRI)

v Trait: days from sowing to flowering
= 3sites (2 in Madagascar, 1 in Senegal)
= 10 planting dates (on 2 years)

v Number of observations for each genotype: 8 to 10
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In silico phenotyping

« Sample study, step 1:

v' Decomposition of the complex trait

v' Crop models {in case of WARM}:
= Base temperature for thermal time accumulation
= Maximum temperature for thermal time accumulation
= Sensitivity to photoperiod
= Growing degree days from sowing to flowering

v" Minimize the risk of losing robustness during calibration

= Sensitivity analysis to identify most relevant parameters
(those to focus on during calibration)



In silico phenotyping

Sample study, step 1:
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In silico phenotyping

« Sample study, step 1:

v' Decomposition of the complex trait

v' Crop models {in case of WARM}:
= Base temperature for thermal time accumulation
= Maximum temperature for thermal time accumulation
= Sensitivity to photoperiod
= Growing degree days from sowing to flowering

v" Minimize the risk of losing robustness during calibration

= Sensitivity analysis to identify most relevant parameters
(those to focus on during calibration)
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Development of crop ideotypes

In silico phenotyping

« Sample study, step 2

v GP on cdadlibrated model parameters

R package rrBLUP (Endelman, 2011) for GP

RR-BLUP can directly handle multi-environment data and
allow running GWAS and GP with a one-step approach

Training dataset: 135 accessions
o Relationships between SNPs and model parameters
Validation dataset: 34 accessions

o SNPs-derived model parameters to simulate flowering
date



Development of crop ideotypes

In silico phenotyping

« Sample study, step

3

v Prediction of flowering date by running the crop models with
genomic-predicted model parameters (validation dataset)

Parameter 1 - GDDFlo

Genomic-

Accession

Parameter 2 - PhotoSens

1
2

Accession

Genomic-
predicted
value

3 1
...upto 342
3

...upto 34

0.72
0.99
0.97
0.71

» W=

Flowering
date

v" Evaluation through comparison with observed flowering date



