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In silico ideotyping

• After deriving ideotype profiles, a crucial step is quantifying the 

potential benefits deriving from their adoption

 This allows comparing costs and benefits of a breeding 

program based on the ideotypes
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In silico ideotyping

• In case the ideotype differs from current varieties for a single trait, 

the evaluation of its performances can be achieved with an in 

silico introgression
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In silico ideotyping

• Sample results

 Evaluation of rice ideotypes in Italian districts

 Resistance to blast disease
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In silico ideotyping

• Sample results

 Evaluation of rice ideotypes in Italian districts

 Tolerance to cold-induced spikelet sterility
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In silico ideotyping

• As mentioned, current crop models are not completely suitable to 

support breeding/genetics

 They were not explicitly developed for this purpose

 The risk is to develop ideotypes that cannot be realized in 

vivo

• Two strategies:

 Mid term
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In silico ideotyping

Mid term strategy

• Develop new models, by building models around traits

 An example for rice and salinity (toxic effect)

 We defined as “traits” crop features for which specific 
breeding programs are ongoing

 We developed a model starting from those traits
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In silico ideotyping

Mid term strategy

• Tolerance traits:

 Na+ uptake and translocation

to the shoot (T1)

 Na+ sequestration into

pseudo-culm base (T2) 

 Na+ compartmentation

into oldest leaves (T3)

 Impact of the accumulated

Na+ on photosynthesis and

leaf senescence (T4)

 Na+ induced spikelet

sterility (T5)
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Root level

Culm level

Canopy (leaf) level

Panicle level



In silico ideotyping

Mid term strategy

• Sample results 

 Rice, salinity, Greece, California
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Mid term strategy
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In silico ideotyping

Mid term strategy

• Develop new models, by building models around traits

 Not only salinity…

 Canopy structure
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Mid term strategy

• Develop new models, by building models around traits

 Not only salinity…

 Canopy structure
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In silico ideotyping

Mid term strategy

• Develop new models, by building models around traits

 Not only salinity…

 Multi-spectral photosynthesis

o Available crop models simulate photosynthesis without 

considering efficiency in different wavelengths

o Saturation to light of enzymatic chains is mostly
simulated at the level of whole canopy

o Phytochrome A
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In silico ideotyping

Phytochrome A
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In silico ideotyping

• As mentioned, current crop models are not completely suitable to 

support breeding/genetics

 They were not explicitly developed for this purpose

 The risk is to develop ideotypes that cannot be realized in 

vivo

• Two strategies:

 Mid term

 Short term
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In silico ideotyping

Short term strategy

• What can we do while new models are developed?

• Try to reduce the risk of defining in silico varieties that cannot be 

realized in vivo

• How?

 Selecting the most suitable model according to the specific 

objective

 Pay attention to the biophysical meaning of parameters

(which parameters, ranges, distributions)

 Multi-model ideotyping?
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In silico ideotyping

Multi-model ideotyping

• Assumptions:

 Models are partially unsuitable for ideotyping for different 

reasons (ways processes are represented)

 Each having imperfect relationships between parameters

and traits

 The effects of those imperfect relationships will be diluted

 The impact of the (over)responsiveness of different models to 

the uncertainty in the distributions for the same parameters (or 

of parameters with a very similar meaning) will be decreased

 We are leading an international activity on this within AgMIP-

Rice
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In silico ideotyping

Short term strategy

• What can we do while new models are developed?

• Try to reduce the risk of defining in silico varieties that cannot be 

realized in vivo

• How?

 Selecting the most suitable model according to the specific 

objective

 Pay attention to the biophysical meaning of parameters

(which parameters, ranges, distributions)

 Multi-model ideotyping?

 Interaction between modellers, breeders, geneticists, 

physiologists
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Crop models and breeding

Two main strategies

1. Identifying most promising traits (and trait values), also targeting 

“future” conditions

• Estimating potential benefits

…in silico ideotyping

2. Extending the potential of genomic prediction (GP)

…in silico phenotyping?

• Very few attempts at the moment

Currently, focus on phenology
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In silico phenotyping

• “Standard” GP

 Genomic data

 Plant traits from phenotyping

 Deriving relationships

between genomic data

and plant traits

 Predicting phenotype

of other accessions

+

• “Model-based” GP

 Decompose complex 
traits (trait ≈ parameter)

 Calibrate model 

parameters using 

phenotyping data

 Derive relationships

between genomic

data and model 

parameters
G × E
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In silico phenotyping

Why crop model-supported GP?

 Standard GP:

 Statistics is used to derive relationships

between genotype and phenotype

 relationships are not explicit

 relationships valid only under the

same conditions for which they were developed

 Model-supported GP:

 The model is used to interpret G × E interactions

 relationships between genotype and phenotype are 

more explicit

 relationships should be valid under conditions different

from those they were developed for
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In silico phenotyping

• Sample results:

 169 rice accessions (rice diversity panel)

 Genomic data (SNPs) consisting of 700,000 SNPs from the high-

density rice array (IRRI)

 Trait: days from sowing to flowering

 3 sites (2 in Madagascar, 1 in Senegal)

 10 planting dates (on 2 years)

 Number of observations for each genotype: 8 to 10
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In silico phenotyping

• Sample study, step 1:

 Decomposition of the complex trait

 Crop models {in case of WARM}:

 Base temperature for thermal time accumulation

 Maximum temperature for thermal time accumulation

 Sensitivity to photoperiod

 Growing degree days from sowing to flowering

 Minimize the risk of losing robustness during calibration

 Sensitivity analysis to identify most relevant parameters 

(those to focus on during calibration)
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In silico phenotyping

• Sample study, step 1:

 Decomposition of the complex trait

 Crop models {in case of WARM}:

 Base temperature for thermal time accumulation

 Maximum temperature for thermal time accumulation

 Sensitivity to photoperiod

 Growing degree days from sowing to flowering

 Minimize the risk of losing robustness during calibration

 Sensitivity analysis to identify most relevant parameters 

(those to focus on during calibration)
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In silico phenotyping

• Sample study, step 2

 GP on calibrated model parameters

 R package rrBLUP (Endelman, 2011) for GP

 RR-BLUP can directly handle multi-environment data and 
allow running GWAS and GP with a one-step approach

 Training dataset: 135 accessions

o Relationships between SNPs and model parameters

 Validation dataset: 34 accessions

o SNPs-derived model parameters to simulate flowering 

date
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In silico phenotyping

• Sample study, step 3

 Prediction of flowering date by running the crop models with 

genomic-predicted model parameters (validation dataset)

 Evaluation through comparison with observed flowering date

Flowering 

date

Accession

Genomic-

predicted 

value

1 1438

2 1646

3 1698

…up to 34 1867

Parameter 1 - GDDFlo

Accession

Genomic-

predicted 

value

1 0.72

2 0.99

3 0.97

…up to 34 0.71

Parameter 2 - PhotoSens


