

Adaptation to climate change In silico ideotyping

Introduction

Sistemi Colturali

Process-based crop models can be used to **support breeding** programs (Boote et al. 2001) via the **definition and test** of in silico **ideotypes**.

Assumption:

• Close relationship between model parameters and plant traits (e.g., Semenov and Stratonovitch 2013).

Possible use of in silico ideotypes:

- A priori to identify traits/complex of genes on which breeder should focus (Herndl et al. 2007);
- A posteriori to test "modified genotypes" under different environmental conditions and over long-term periods (Hammer et al. 2002).

Introduction

Sistemi Colturali

Parameters

 They describe morphological or physiological features of a species or of a genotype (genetic coefficients) (e.g., specific leaf area)

G

Μ

E

 $G \times E \times M$

- Events
 - ✓ Management practices (e.g., sowing)
- Variables
 - ✓ Driving variables (e.g., global solar radiation)
 - Rate variables (e.g., aboveground biomass increase during the time step)
 - State variables (e.g., aboveground biomass at time t, leaf area index at time t, plant height at time t)

Introduction

Sistemi Colturali

Limits:

- Absence of explicit representation of the genetics behind traits (Hammer et al. 2002)
- ...Crop models were **not developed to explicitly target ideotyping** studies... and are simplified representation of systems.
- Some processes are often not simulated, and sometimes they have a large impact on yields and farmers' income
- In some cases parameters do not have clear relationships with traits... and some traits breeders are working on do not have clear relationships with parameters
 - Possible discrepancies between in silico improved varieties and their in vivo realizations.
 - Traits for ideotyping are often selected according to "what the model can do"

www.nature.com/scientificreports

SCIENTIFIC REPORTS

OPEN Trait-based model development to support breeding programs. A case study for salt tolerance and rice

Livia Paleari¹, Ermes Movedi¹ & Roberto Confalonieri²

- In some cases parameters do not have clear relationships with traits... and some traits breeders are working on do not have clear relationships with parameters
 - Possible discrepancies between in silico improved varieties and their in vivo realizations.
 - Traits for ideotyping are often selected according to "what the model can do"

Objectives

- 1. Identifying **key traits** (pathways?) **breeders could focus on** in the coming years
 - ✓ Canopy structure and photosynthetic efficiency
 - ✓ Resistance to fungal pathogens
 - Tolerance for pre-flowering and flowering temperature shocks inducing sterility
 - ✓ Grain quality
- 2. Defining ideotypes and testing their performance at district level
- 3. Evaluate whether it is worth undertaking breeding pathways with respect to
 - ✓ spatial heterogeneity (also among districts) and
 - ✓ changes in climate (breeders target something in the coming 15-25 years) (Zheng et al. 2012)

Objective 1: Methods

Sistemi Colturali

Which breeding pathway?

Received: 29 October 2016 Revised: 24 February 2017

17 Accepted: 27 February 2017

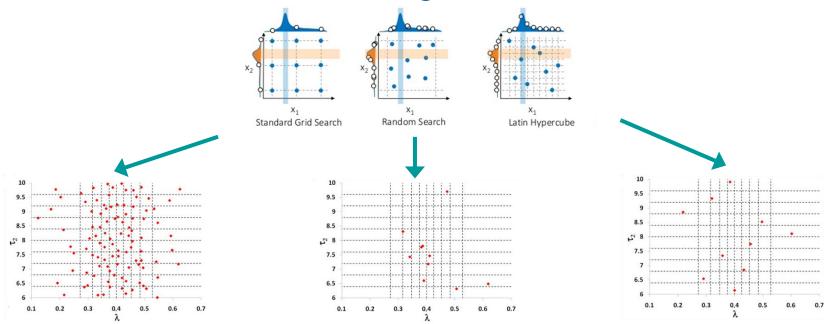
DOI: 10.1111/gcb.13682

PRIMARY RESEARCH ARTICLE

WILEY Global Change Biology

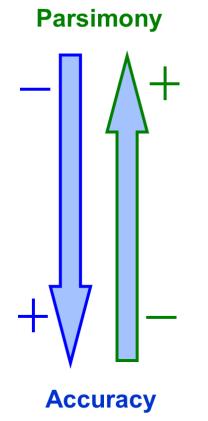
Surfing parameter hyperspaces under climate change scenarios to design future rice ideotypes

Livia Paleari¹ | Ermes Movedi¹ | Giovanni Cappelli^{2*} | Lloyd T. Wilson³ | Roberto Confalonieri⁴


Objective 1: Methods

- Sensitivity analysis:
 - Objective: quantifying the role of uncertain input factors in explaining the variability of model outputs.
 - It is often used to identify the model parameters that have the largest effect on model outputs.
 - Traditionally, it was used to identify the parameters on which concentrate the efforts for parameterization.
- The first idea could be:
 - Dividing the biophysical range of each input in a certain number of regular intervals.
 - ✓ For each input, running simulations assigning to the input the value of each interval.
 - N-dimensional grids (N being the number of inputs)

Objective 1: Methods


- Sensitivity analysis:
 - ✓ Problems:
 - How many intervals? (response functions often discontinuous)
 - If many intervals and N-dimensional grids → the number of simulations can be huge

Objective 1: Methods

- Sensitivity analysis:
 - Sensitivity analysis methods were proposed to efficiently explore the parameter hyperspace

- **Screening** methods (mean and standard deviations of incremental ratios)
 - ✓ Morris
- Regression-based methods
 - ✓ Latin Hypercube Sampling, random...
- Variance-based methods
 - ✓ Sobol'
 - ✓ Fourier Amplitude Sensitivity test (FAST)
 - ✓ Extended FAST

Objective 1: Methods

Which breeding pathway?

- Sensitivity analysis:
 - ✓ Method: Sobol' (1993) Total order effect
 - ✓ Method parameterization (Confalonieri et al. 2010):
 - Lowest value of $q \mid M > (\gamma \cdot n)$
 - with: $M = 2^{q+3} (2n+2)$
 - $q = \{1, 2, 3, \dots, Q\}$

More than 6.6 million simulations

- γ = model runs for each parameter (500)
- n = number of factors in the sensitivity analysis

✓ Variable analyzed: Value ha⁻¹ → $Y_L \cdot V - Y_L \cdot [(1-HR)+C] \cdot V/2$

- Y_L (t ha⁻¹): yield limited by biotic/abiotic factors
- V (euros t^{-1}): value of entire and non chalky grains
- HR (-, 0-1): head rice yield
- C (-, 0-1): chalkiness

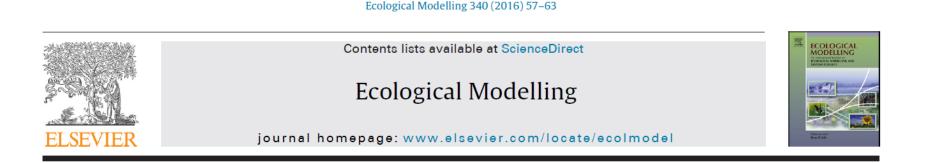
Objective 1: Methods

- Modelling solution: WARM (e.g. Confalonieri et al. 2009)
 - Growth and development, micrometeorology:
 - Parameterization: Li et al. 2015; Confalonieri et al. 2009
 - Cold/heat shocks before and around flowering:
 - Parameterization: EU FP7 MODEXTREME
 - ✓ Leaf and neck blast:
 - o Parameterization: Paleari et al. 2015; Bregaglio et al. 2016
 - \checkmark Grain quality
 - Parameterization: Cappelli et al. 2014

Objective 1: Methods

Which breeding pathway?

Parameters/traits:


Parameter	Relevance for breeding (e.g.)	Distribution	Source
Radiation use efficiency (RUE; g MJ ⁻¹)	Peng et al. 2008; Dingkhun et al. 2015	Normal (m 2.7; s 0.1)	Kiniry et al. 2001; Boschetti et al. 2006
Extinction coefficient	Peng et al. 2008; Sheehy	Normal	Casanova et al. 1998; Dingkhun et al. 1999;
(k; -)	et al. 2013	(m 0.47; s 0.04)	Kiniry et al. 2001; Boschetti et al. 2006
SLA at emergence	Peng et al. 2008; Kush et	Normal	Kropff et al. 1994; Ash et al. 1998;
(SLAini; m² kg⁻¹)	al. 2012	(m 41.6; s 5.9)	Confalonieri and Bocchi 2005
SLA at tillering	Ashikari et al. 2005; Peng	Normal	Laza et al. 2015; Boschetti et al. 2006
(SLAtill; m² kg⁻¹)	et al. 2008;	(m 28.7; s 3.9)	
Threshold T for cold sterility (T-ColdSter; °C)	Suh et al. 2010; Sanchez et al. 2014	Normal (temp. m 13.5; s 1.4) (trop. M 16.6; s 1.2)	Satake 1969; Da Cruz et al. 2006; Farrel et al. 2006; Thakur et al. 2010; Deng et al. 2011; Dreni et al. 2012; National Rice Authority
Threshold T for heat sterility (T-HeatSter; °C)	Matsui 2009; Jagadish et al. 2010	Normal (m 34.4; s 1.5)	Yoshida 1981; Satake 1995; Nakagawa et al. 2002; Matsui 2009; Ishimaru et al. 2010; Jagadish et al. 2010; Shah et al. 2011; Maruyama et al. 2013
Blast resistance	Fisher et al. 2005; Fukoka	Discrete	National Rice Authority
(BlastRes; -; 1 to 3)	et al. 2009	(1, 2, 3)	
Threshold T for chalkiness (T-Chalkiness; °C)	Yamakawa et al. 2007; Usui et al. 2014	Normal (m 26.4; s 0.9)	Wakamatsu et al. 2007; Yamakawa et al. 2007; Morita et al. 2008; Madan et al. 2012; Usui et al. 2014; Matsutomi et al. 2015
Threshold T for grain	Siebenmorgen et al. 2013;	Normal	Ambardekar et al. 2011; Okada et al. 2011;
breakage (T-HeadRIce; °C)	Sreenivasulu et al. 2015	(m 23.9; s 2.1)	Siebenmorgen et al. 2013

Objective 1: Methods

Which breeding pathway?

- Pay attention to distributions!
- Uncertainty in distributions can markedly alter the results of the analysis!

Sensitivity analysis of a sensitivity analysis: We are likely overlooking the impact of distributional assumptions

Livia Paleari^a, Roberto Confalonieri^{b,*}

^a University of Milan, DISAA, Cassandra lab, via Celoria 2, 20133 Milano, Italy

^b University of Milan, DEMM, Cassandra lab, via Celoria 2, 20133 Milano, Italy

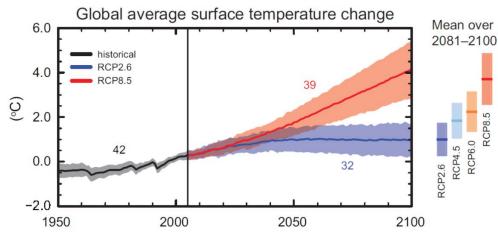
Objective 1: Methods

Which breeding pathway?

• Sites:

Sistemi Colturali

	Los Baños	Ludhiana	Nanjing	Shizukuishi	Milan
Country	Philippines	India	China	Japan	Italy
Coordinates	121°9'E, 14°6'N	75°48'E, 30°54'N	118°59'E, 32°56'N	140°57'E, 39°41'N	8°41'E, 45°4'N
Climate type	Tropical, humid	Subtropical, semiarid	Subtropical, semihumid	Cool temperate, humid	Temperate, semiarid
Mean T max (°C)	30.2	29.3	20.3	13.7	18.2
Mean T min (°C)	23.2	16.8	12.0	5.1	8.6
Mean rad (MJ m ⁻²)	15.9	18.7	14.1	12.1	14.6
Rainfall (mm)	2060	703	1076	1557	698
Emberger continentality (Tmax warmest month – Tmin coldest month)	11.0 (oceanic insular)	31.8 (semi- continental)	32.3 (semi- continental)	33.1 (semi- continental)	31.1 (semi- continental)
SAM Aridity index (ET0-Rain)/(ED0+Rain)	0.13	-0.39	-0.20	-0.01	-0.36

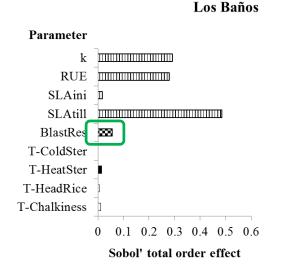

Objective 1: Methods

Which breeding pathway?

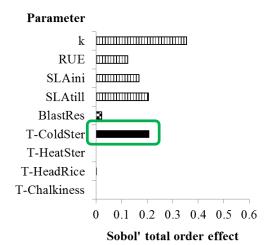
Climate:

Sistemi Colturali

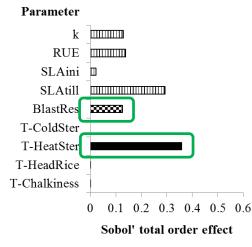
- ✓ 20-year time frames: 1986-2005 (baseline), 2030, (2050, 2070)
- ✓ IPCC AR5:
 - RCP2.6 (emissions peak in 2010-2020, decline later)
 - RCP8.5 (emissions continue to rise)
- ✓ GCMs:

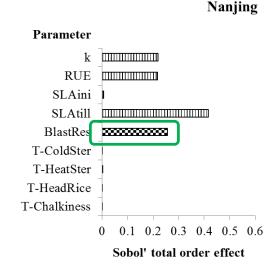


- HadGEM2 (Collins et al. 2011),
- o GISS-ModelE2 (Schmidt et al. 2006)
- ✓ Weather generator: CLIMAK (Danuso 2002)

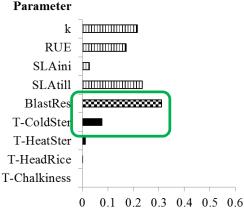


Objective 1: Results


Which breeding pathway?



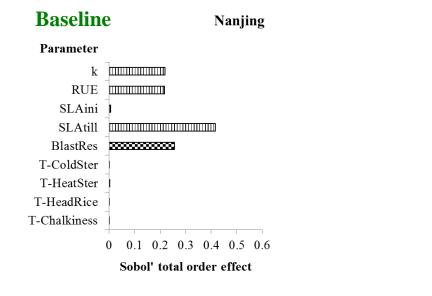
Shizukuishi



Ludhiana

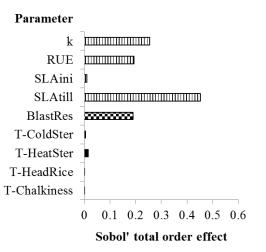
Milan

Sobol' total order effect


Low model sensitivity to a parameter does not mean that the impact of the process involved is negligible!

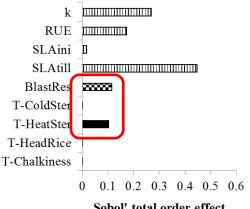
Objective 1: Results

Which breeding pathway?


GISS 2.6

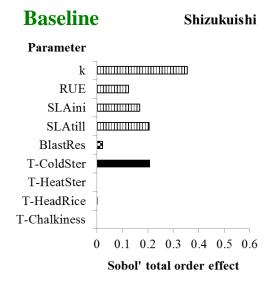
Results can be totally different while changing climate scenarios, for both

- current vs "future"
- different future projections •



2030

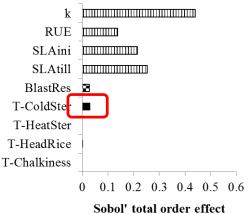
HadGEM 8.5



Sobol' total order effect

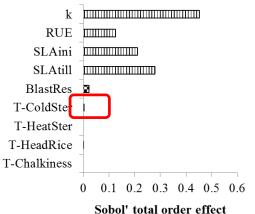
Objective 1: Results

Which breeding pathway?

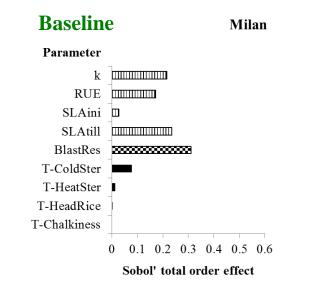

Results can be totally different while changing climate scenarios, for both

- current "future"
- different future projections

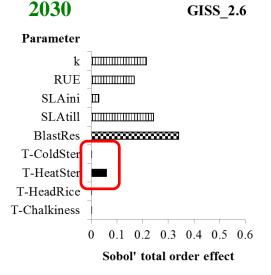
GISS_2.6

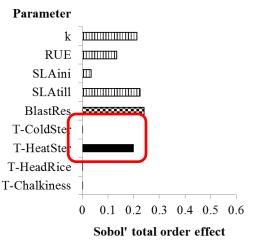

Parameter

HadGEM_8.5

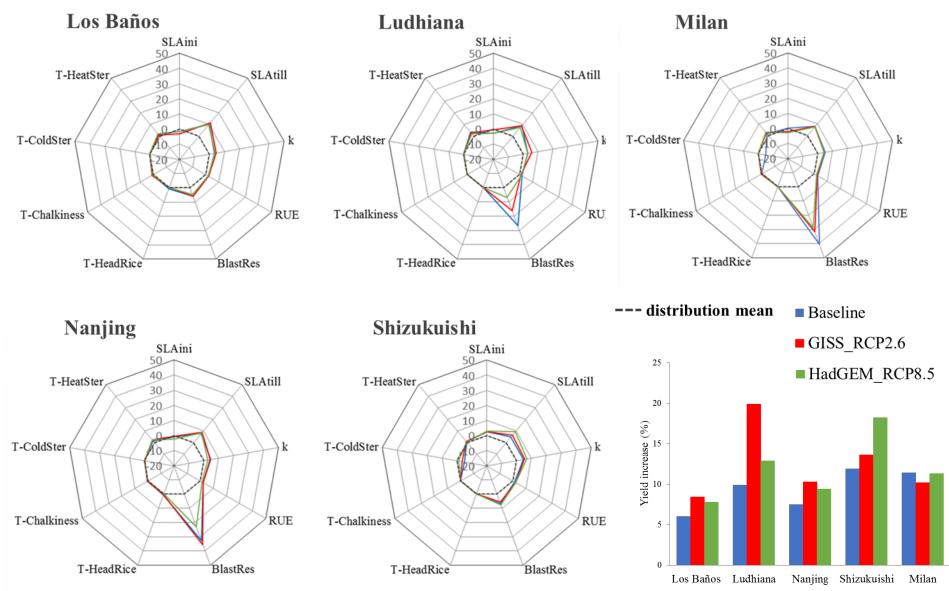

Parameter

Objective 1: Results


Which breeding pathway?


Results can be totally different while changing climate scenarios, for both

- current "future"
- different future projections



Objective 1: Results

Objectives

Sistemi Colturali

- 1. Identifying **key traits** (pathways?) **breeders could focus on** in the coming years
 - ✓ Canopy structure and photosynthetic efficiency
 - ✓ Resistance to fungal pathogens
 - Tolerance against pre-flowering and flowering temperature shocks inducing sterility
 - ✓ Grain quality
- 2. Defining ideotypes and testing their performance at district level (in Italy)
- 3. Evaluate whether it is worth undertaking breeding pathways with respect to
 - ✓ spatial heterogeneity (also among districts) and
 - ✓ changes in climate (breeders target something in the coming 15-25 years) (Zheng et al. 2012)

Objective 2: Methods

Ideotypes' performance

Climatic Change DOI 10.1007/s10584-015-1457-4

Sistemi Colturali

CrossMark

Climatia Change

District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios

L. Paleari¹ · G. Cappelli¹ · S. Bregaglio¹ · M. Acutis¹ · M. Donatelli² · G. A. Sacchi³ · E. Lupotto⁴ · M. Boschetti⁵ · G. Manfron^{3,5} · R. Confalonieri¹

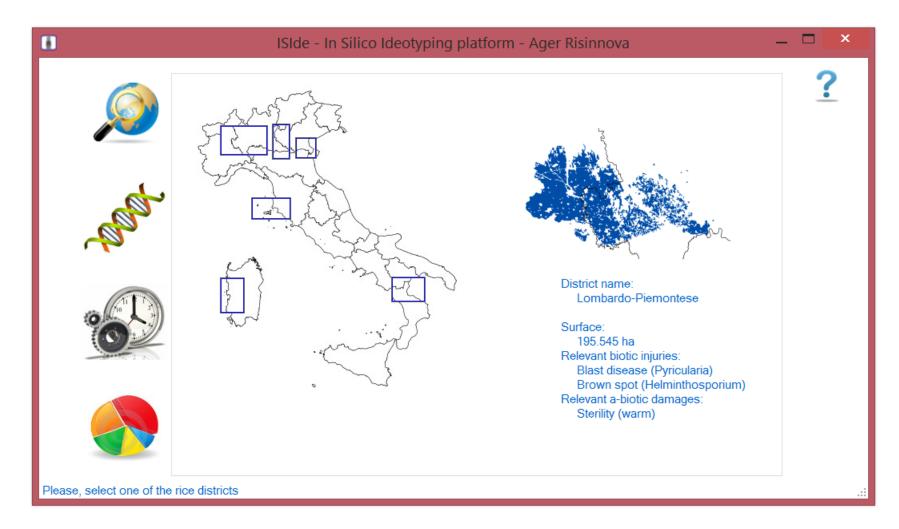
	Climatic Change
	An Interdisciplinary, International Journal Devoted to the Description, Causes and Implications of Climatic Change
S	Co-Linux METHOL OPPENDENCE CARY YORK
S	۲
	Springer Springer
	2 Springer

Computers and Electronics in Agriculture 128 (2016) 46-49

Application note

ISIde: A rice modelling platform for in silico ideotyping

L. Paleari^{a,*}, S. Bregaglio^a, G. Cappelli^a, E. Movedi^a, R. Confalonieri^b


^a Università degli Studi di Milano, DiSAA, Cassandra Lab, via Celoria 2, 20133 Milan, Italy ^b Università degli Studi di Milano, DEMM, Cassandra Lab, via Celoria 2, 20133 Milan, Italy

Objective 2: Methods

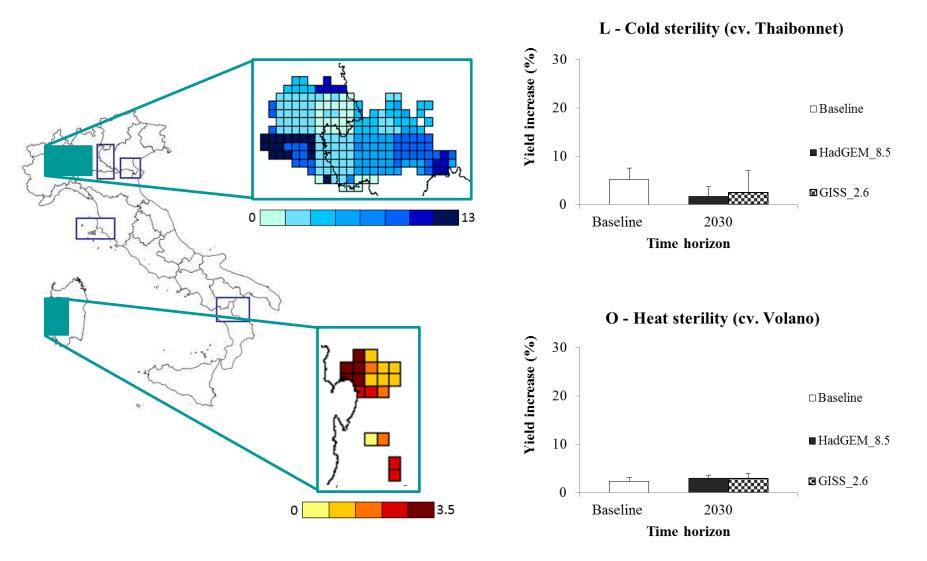
Ideotypes' performance

Objective 2: Methods

Sistemi Colturali

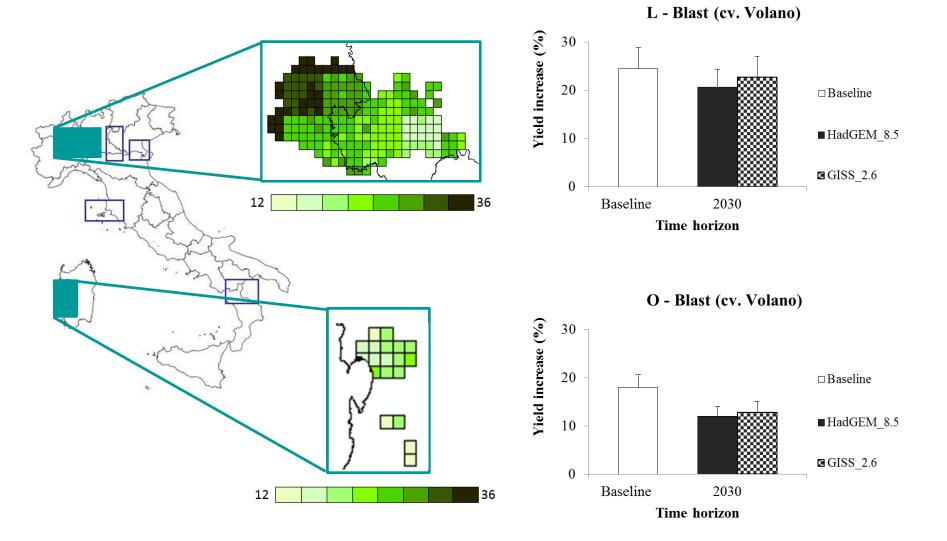
Ideotypes' performance

- Modelling solutions: those used for the sensitivity analysis.
- Climate scenarios: same time frames, RCPs (+ RCP4.5 and RCP 6.0), GCMs and weather generator used for the sensitivity analysis.
- **Rice distribution**: from European Corine Land Cover (class "Rice").
- Sowing dates: 10-year median from time series of MODIS 8-Day composite images (MOD09A1 at 500 m resolution) (Boschetti et al. 2009).
- Varieties and management information: most representative 34 varieties in 2006-2010 characterized for many traits, including blast resistance (National Rice Authority, www.enterisi.it).
- Elementary simulation unit: 5 km × 5 km grid cells.
- Ideotype definition: introgression (trait values available in current rice genotypes).


More than 2.3 million simulations

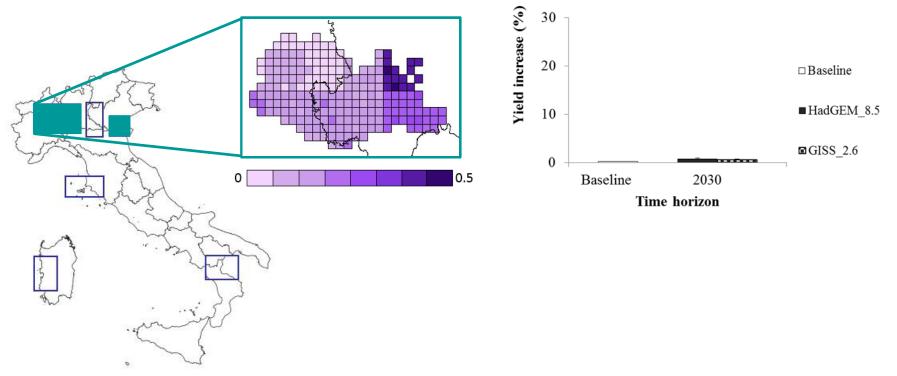
Objective 2: Results

Sistemi Colturali


Ideotypes' performance

Objective 2: Results

Ideotypes' performance

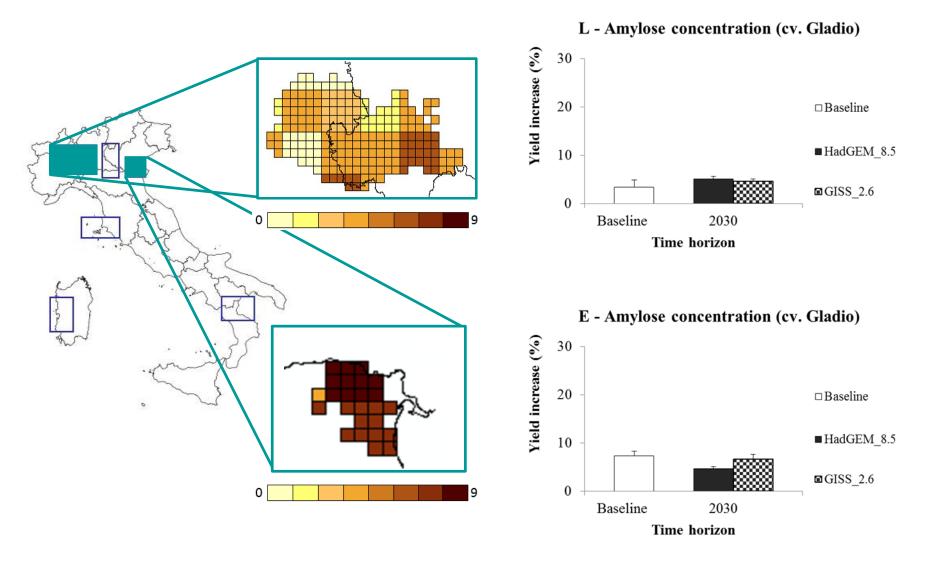


Objective 2: Results

Sistemi Colturali

Ideotypes' performance

L - Head rice (cv. Gladio)



Objective 2: Results

Sistemi Colturali

Ideotypes' performance

Objectives

Sistemi Colturali

- 1. Identifying **key traits** (pathways?) **breeders could focus on** in the coming years
 - ✓ Canopy structure and photosynthetic efficiency
 - ✓ Resistance to fungal pathogens
 - Tolerance against pre-flowering and flowering temperature shocks inducing sterility
 - ✓ Grain quality
- 2. Defining ideotypes and testing their performance at district level (in Italy)
- 3. Evaluate whether it is worth undertaking breeding pathways with respect to
 - ✓ spatial heterogeneity (also among districts) and
 - ✓ changes in climate (breeders target something in the coming 15-25 years) (Zheng et al. 2012)

Objective 3: Methods

On which traits is it worth breeding?

Nested ANOVA • Main factor:

(Italy)

Sistemi Colturali

- ✓ district
 - o 6 levels
- Nested factors: ✓ genotype
 - 2 levels: current varieties, ideotype (improved)
 - ✓ climate scenario
 - 3 levels: baseline,
 2030 RCP2.6 GISS-ModelE2,
 2030 RCP8.5 HadGEM2
- Replicates: 20 seasons for each climate scenario
- Variables: 🗸 yield limited biotic/abiotic factors,

 \checkmark grain quality variables

- Tests for: Autocorrelation among replicates: no autocorrelation
 - Normality, <u>homoscedasticity</u> (grain quality variables transformed)

Objective 3: Results

Sistemi Colturali

On which traits is it worth breeding?

ANOVA: Results (Italy)

Variable	p-value {eta squared, η²}					
	Genotype (District)	Climate scenario (District)	District	Genotype × Scenario (District)	Note	
Blast-limited yield	<0.01 { 0.378 }	<0.01 {0.080}	<0.01 { 0.407 }	n.s.		
Cold-sterility limited yield	n.s.	<0.01 { 0.344 }	<0.01 { 0.666 }	n.s.		
Heat-sterility limited yield	n.s.	<0.01 { 0.326 }	<0.01 { 0.400 }	n.s.		
Head rice	<0.01 { 0.035 }	<0.01 {0.179}	<0.01 {0.284 }	n.s.	Significant but not "relevant" (low	
Non chalky grains	<0.01 { <mark>0.211</mark> }	<0.01 { 0.503 }	<0.01 { 0.364 }	n.s.	variability in data: even small differences are significant)	
Protein content	n.s.	<0.01 { 0.314 }	<0.01 { 0.234 }	n.s.		

Conclusions

Sistemi Colturali

- **Breeding** for **traits** involved with **resistance/tolerance** to biotic/abiotic stressors **could guarantee benefits similar** to those coming from canopy improved for structure or photosynthetic efficiency.
- Breeding programs should account for (models!)
 - ✓ Heterogeneity in **space** (production districts)
 - ✓ Climate change

They could largely frustrate breeding programs by hiding the benefits coming from improved genotypes.

• This is what we obtained for traits involved with **grain quality**.

 Parameters for blast (those not involved with plant resistance but with pathogen physiology) can probably be refined for Asian sites (likely races with different features).

limite

- Evolutionary potential of the pathogen was not considered.
- Models for grain quality more empiric: this could have a larger effect on uncertainty in parameterization compared to other sub-models.
- Many processes interacting and not all of them simulated (e.g. no effect of N fertilization on susceptibility to blast was simulated).

References

Sistemi Colturali

- Boote, K.J. et al., 2001. Physiology and modelling of traits in crop plants: implications for genetic improvement. Agricult. Syst. 70, 395-420.
- Boschetti, M. et al., 2009. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 30, 4643-4662.
- Bregaglio, S. et al., 2016. Coupling a generic disease model to the WARM rice simulator to assess leaf and panicle blast impacts in temperate climate. Europ. J. Agron. in press.
- Cappelli, G. et al., 2014. A software component implementing a library of models for the simulation of pre-harvest rice grain quality. Comput. Electron. Agric. 104, 18-24.
- Collins, W.J. et al., 2011. Development and evaluation of an Earth-system model HadGEM2. Geosci. Model Dev. Discuss. 4, 997-1062.
- Confalonieri, R., 2012. Combining a weather generator and a standard sensitivity analysis method to quantify the relevance of weather variables on agrometeorological models outputs. Theor. App. Climatol. 108, 19-30.
- Confalonieri, R. et al., 2009. An improved model to simulate rice yield. Agron. Sustain. Dev. 29, 463-474.
- Confalonieri, R. et al., 2010. Comparison of sensitivity analysis techniques: a case study with the rice model WARM. Ecol. Model. 221, 1897-1906.
- Hammer, G.L. et al., 2002. Future contribution of crop modelling from heuristic and supporting decision making to understanding genetic regulation and aiding crop improvement. Eur. J. Agron. 18, 15-31.
- Herndl, M. et al., 2007. A model based ideotyping approach for wheat under different environmental conditions in North China Plain. Agric Sci China 6, 1426-1436.
- Li, T. et al., 2015. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biol. 21, 1328-1341.
- Paleari, L. et al., 2015. District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios. Climatic Change 132, 661-675.
- Schmidt, G.A. et al., 2006. Present day atmospheric simulations using giss modele: Comparison to in-situ, satellite and reanalysis data. J. Climate 19, 153-192.
- Semenov, M.A., Stratonovitch, P., 2013. Designing high-yielding wheat ideotypes for a changing climate. Food Energy Secur. 2, 185-196.
- Sobol', I.M., 1993. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414.